RoofViews

Commercial Roofing

Time-Saving Products & Tips for Your Commercial Roofing Business

By Karen L Edwards

March 08, 2018

Self-adhered TPO being installed on commercial roof

With the labor pool stretched thin, finding time-saving products is high on many contractors' to-do lists. Saving time doesn't mean jeopardizing quality as manufacturers continually work to deliver solutions that help increase efficiency while still delivering a first-class installation.

To help contractors save time while still producing high-quality work, GAF offers several products that can help a commercial roofing business do more in less time.

1. How Long Does Spray Adhesive Take to Dry?

EverGuard® TPO Quick Spray Adhesive has a flash time of five minutes or less and can be applied 50% faster than traditional bucket and roller adhesive. When used properly, a single canister can cover the installation of approximately 10 squares, compared to the approximately three squares of installation a bucket can cover. (As with all adhesives, the substrate's porosity can impact coverage rates.)

Because it's a solvent-based adhesive, it's sprayable, allowing installers to quickly bond thermoplastic polyolefin (TPO) membrane to a variety of approved substrates. Simply spray it uniformly onto the substrate and the back of the membrane. Then, apply pressure with a broom or weighted roller to ensure adhesion and heat-weld the seams.

2. How Do TPO Accessories Save Time?

It can take a significant amount of time, experience, and know-how to properly measure, cut, and hand-weld details. GAF TPO accessories are available for most details of a rooftop, offering a full line of vent and pipe boots, tube wraps, pourable sealer pockets, and universal corners that can be cut to accommodate either an inside or outside corner.

When the accessory is ready to install with no field fabrication, you'll find that installers not only save time but also achieve consistent quality in all the flashings while boosting their productivity.

3. How Does Fabricated Edge Metal Save Time?

Fabricating edge metal in the field requires time and experience, not to mention the additional equipment needed to form the metal. GAF Perimeter Edge Metal saves hours of time in the field, and the coping, drip edges, fascia, and accessories are easy to install with features like prepunched holes to ensure the secure termination of the membrane.

Because all GAF edge metal is tested and compliant with the ANSI/SPRI ES-1, FM, Miami Dade, and Florida Building Code for IBC, you can have confidence in knowing that the most critical point on the roof—the perimeter—has the highest protection.

4. What Is a Self-Adhered Roofing System?

A self-adhered roofing system is up to 60% faster to install than a roof that is traditionally adhered. Self-adhered TPO eliminates the need to apply adhesive altogether. EverGuard® SA TPO Self-Adhered Roof Membrane comes with the adhesive already applied on the back of the membrane. Once positioned, the crew just folds the membrane sheet back, removes the release liner to expose the factory-applied adhesive, lays the membrane in place, and brooms in the sheet. The crew then uses a weighted roller and heat-welds the seams.

You not only save time during the installation, but you also save time cleaning up the jobsite as there are no buckets, rollers, or containers to dispose of.

5. How Does a Self-Adhered Vapor Barrier Work?

GAF SA Vapor Retarder XL relies on an advanced, high-tack butyl rubber adhesive and is self-sealing, resulting in three times the peel strength of modified bitumen self-adhered vapor barriers.

It also saves time right off the bat by eliminating the need for primer prior to installation. The large, six-square rolls reduce the number of rolls needed per job, resulting in fewer seams. Its extreme durability allows it to be left exposed to the elements for up to six months when properly installed, plus it provides a slip-resistant walking surface for added safety.

6. Can Using PVC Save Time?

Time studies have proven that EverGuard® PVC can be installed up to 50% faster than traditional adhered systems when using EverGuard® PVC Quick-Lay Adhesive. PVC is extremely versatile when it comes to installation methods as it can be adhered, mechanically attached, or induction welded. Available accessories and adhesives also speed up the installation.

7. How Can Wider Membrane Rolls Save Time?

When self-adhered TPO isn't an option, roofers can make their installation time more efficient by using rolls of membrane that are wider than the standard 10 feet, known as extra-wide roll roofing. GAF offers 12-foot-wide rolls of membrane that are ideal for jobs with large, open rooftop areas. As well as providing more coverage in less time, these 20%-wider rolls mean fewer seams to weld.

Learn from the Highly Trained Professionals at GAF

GAF offers a robust video library featuring roofing veterans Dave Scott and Wally Brown. Their Roofing It Right series features how-to videos, including a self-adhered membrane product overview. These videos cover topics as diverse as roof inspections, core cuts, tear-offs, and installations.

The GAF Commercial team offers step-by-step support with highly trained, regionally based professionals who can understand your unique challenges in tapered design, product installation, energy efficiency, sustainability, and more. Find your local team and save time.

About the Author

Karen L. Edwards is a freelance writer for the construction industry and has a passion for roofing, having worked in the industry for 20 years.

Related Articles

Conference attendees listen to a panel of speakers.
In Your Community

Making Connections at the 2024 GAF Latinos In Roofing Summit

For the past several years, GAF has hosted the Latinos In Roofing Summit & Expo to acknowledge, celebrate, and empower Latino roofing contractors and installers. The event provides networking opportunities, education, and training—presented entirely in Spanish—in a comfortable, welcoming atmosphere.Now in its third year, the summit has become a trusted resource for the Spanish-speaking contractor community to gain insights into how to better run and grow their roofing businesses. Educational sessions cover topics essential for business success, such as sales, insurance restoration work, commercial roofing, leadership, marketing, and roofing products.The first Latinos In Roofing Expo of 2024 was held on June 22nd in Los Angeles, and hundreds of industry professionals attended. With an emphasis on fostering community, the event featured a range of activities, including a pre-reception networking session and the chance to attend an LA Dodgers game with their new connections.Here's a look at what the event offered attendees and the experiences they shared.Breaking through Language BarriersAlan Lopez, GAF CARE trainer, explains that Latinos In Roofing events were developed when he noticed more Hispanic contractors attending GAF events conducted in English. For many of them, English was a second language, so it was harder to learn and take in all the information, some of which was lost in translation. Lopez reached out to his leadership at GAF, and they were eager to offer resources for Latino contractors, hosting the first expo in 2019.Abad Sarate, CEO of Asa Pro Roofing in Seattle, Washington, credits the conference being conducted entirely in Spanish as critical to successfully learning and understanding the information presented. "For us, it is very important to understand it in our main language, it is essential," he says. "And to have this type of conference for many Latino contractors fills us with pride." He continues, "I see more and more Latinos owning roofing companies, and the truth is that I am very happy—it makes me very proud as a Latino too."Luis Velasquez from Entrenando Latinos In Roofing agrees that the summit presented in Spanish was important to attendees' success. "We Latinos, who are first generation, who did not go through school, who come from poor countries, have a conflict and that is that we do not understand 100% English, we are not fully bilingual," he said. "So, when we manage to understand what is going on and how we can put it into practice, it is a complete gain. When we put knowledge in our head, the head will put money in our pockets."Creating an Annual Tradition for Roofing ProfessionalsGaining knowledge for business success was a key theme at this year's event. The informational sessions, keynote lectures, and demonstrations enabled attendees to learn about new products and gain new skills while connecting with other Latinos in the roofing industry. Many attendees were repeat visitors, demonstrating the value the event provides.Sarate is a two-time attendee and explains that the annual gathering has been instrumental in his company's development. "It has been an exceptional part of our growth because of all the knowledge that we take away from here," he shares. "We come back with much more knowledge. And in the end, knowledge is power... We put that knowledge back into the company, and it has benefited us a lot."Marcos Sierra from Sierra Group Roofing & Solar returned to the expo for a third time because of the networking opportunities and education. "The reason I come back is, one, to see my colleagues from other parts of the United States. Two, every time I come, I learn something new. And three, to refine, refine, refine. [So we can] grow our business," he said.Supporting Contractors beyond the Roofing Summit & ExpoThe Latinos In Roofing initiative started at GAF to create resources and a community for Spanish-speaking contractors and installers. Since establishing the initiative in 2017, the company has seen more and more members of the Hispanic community thrive.Contractors who attend the Latinos In Roofing Summit & Expo are granted access to GAF business tools, which they can use to raise their profit margins and reduce risks. They can also work toward becoming certified with GAF and joining the elite certified contractor program. They can then offer GAF warranties that help with their value propositions when working with potential clients.From increasing profits to growing their client lists and achieving financial independence, the contractors are finding success through the support they receive. Sarate can attest to how attending these Expos has helped his business. He notes that he's grateful for all of the support GAF offers.Joining the CommunityIf you're ready to become part of a community that truly understands your needs, will help you grow your business, and provide resources in your preferred language, explore GAF Latinos In Roofing. You can learn about available resources and online classes, join the GAF rewards program, become certified with GAF, and sign up to attend future events.

By Authors Karen L Edwards

September 18, 2024

Installation of ISO Board and TPO on a Roof
Building Science

Roof Insulation: A Positive Investment to Reduce Total Carbon

Have you ever thought about building products reducing the carbon dioxide emissions caused by your building? When considered over their useful life, materials like insulation decrease total carbon emissions thanks to their performance benefits. Read on for an explanation of how this can work in your designs.What is Total Carbon?Total carbon captures the idea that the carbon impacts of buildings should be considered holistically across the building's entire life span and sometimes beyond. (In this context, "carbon" is shorthand for carbon dioxide (CO2) emissions.) Put simply, total carbon is calculated by adding a building's embodied carbon to its operational carbon.Total Carbon = Embodied Carbon + Operational CarbonWhat is Embodied Carbon?Embodied carbon is comprised of CO2 emissions from everything other than the operations phase of the building. This includes raw material supply, manufacturing, construction/installation, maintenance and repair, deconstruction/demolition, waste processing/disposal of building materials, and transport between each stage and the next. These embodied carbon phases are indicated by the gray CO2 clouds over the different sections of the life cycle in the image below.We often focus on "cradle-to-gate" embodied carbon because this is the simplest to calculate. "Cradle-to-gate" is the sum of carbon emissions from the energy consumed directly or indirectly to produce the construction materials used in a building. The "cradle to gate" approach neglects the remainder of the embodied carbon captured in the broader "cradle to grave" assessment, a more comprehensive view of a building's embodied carbon footprint.What is Operational Carbon?Operational carbon, on the other hand, is generated by energy used during a building's occupancy stage, by heating, cooling, and lighting systems; equipment and appliances; and other critical functions. This is the red CO2 cloud in the life-cycle graphic. It is larger than the gray CO2 clouds because, in most buildings, operational carbon is the largest contributor to total carbon.What is Carbon Dioxide Equivalent (CO2e)?Often, you will see the term CO2e used. According to the US Environmental Protection Agency (EPA), "CO2e is simply the combination of the pollutants that contribute to climate change adjusted using their global warming potential." In other words, it is a way to translate the effect of pollutants (e.g. methane, nitrous oxide) into the equivalent volume of CO2 that would have the same effect on the atmosphere.Today and the FutureToday, carbon from building operations (72%) is a much larger challenge than that from construction materials' embodied carbon (28%) (Architecture 2030, 2019). Projections into 2050 anticipate the operations/embodied carbon split will be closer to 50/50, but this hinges on building designs and renovations between now and 2050 making progress on improving building operations.Why Insulation?Insulation, and specifically continuous insulation on low-slope roofs, is especially relevant to the carbon discussion because, according to the Embodied Carbon 101: Envelope presentation by the Boston Society for Architecture: Insulation occupies the unique position at the intersection of embodied and operational carbon emissions for a building. Insulation is the only building material that directly offsets operational emissions. It can be said to pay back its embodied carbon debt with avoided emissions during the building's lifetime.A Thought Experiment on Reducing Total CarbonTo make progress on reducing the total carbon impact of buildings, it is best to start with the largest piece of today's pie, operational carbon. Within the range of choices made during building design and construction, not all selections have the same effect on operational carbon.When making decisions about carbon and energy reduction strategies, think about the problem as an "investment" rather than a "discretionary expense." Discretionary expenses are easier to reduce or eliminate by simply consuming less. In the example below, imagine you are flying to visit your client's building. Consider this a "discretionary expense." The input on the far left is a given number of kilograms of carbon dioxide equivalent (CO2e) generated for the flight, from the manufacturing of the airplane, to the fuel it burns, to its maintenance. The output is the flight itself, which creates CO2 emissions, but no durable good. In this case, the only CO2 reduction strategy you can make is to make fewer or shorter flights, perhaps by consolidating visits, employing a local designer of record, or visiting the building virtually whenever possible. Now consider the wallpaper you might specify for your client's building. It involves a discretionary expenditure of CO2e, in this case, used to produce a durable good. However, this durable good is a product without use-phase benefits. In other words, it cannot help to save energy during the operational phase of the building. It has other aesthetic and durability benefits, but no operational benefits to offset the CO2 emissions generated to create it. Your choices here are expanded over the previous example of an airplane flight. You can limit CO2 by choosing a product with a long useful life. You can also apply the three Rs: reduce the quantity of new product used, reuse existing material when possible, and recycle product scraps at installation and the rest at the end of its lifespan. In the final step in our thought experiment, consider the insulation in your client's building. As before, we must generate a certain amount of CO2e to create a durable good. In this case, it's one with use-phase benefits. Insulation can reduce operational energy by reducing heat flow through the building enclosure, reducing the need to burn fuel or use electricity to heat and cool the building. The good news is that, in addition to the other strategies considered for the flight and the wallpaper, here you can also maximize operational carbon savings to offset the initial embodied carbon input. And, unlike the discretionary nature of some flights and the often optional decision to use furnishings like wallpaper, heating and cooling are necessary for the functioning of almost all occupied buildings.Based on this example, you can consider building products with operational benefits, like insulation, as an "investment." It is appropriate to look at improving the building enclosure and understanding what the return on the investment is from a carbon perspective. As the comparison above demonstrates, if you have a limited supply of carbon to "invest", putting it into more roof insulation is a very smart move compared to "spending" it on a discretionary flight or on a product without use-phase carbon benefits, such as wallpaper.This means we should be careful not to measure products like insulation that save CO2e in the building use-phase savings only by their embodied carbon use, but by their total carbon profile. So, how do we calculate this?Putting It to the TestWe were curious to know just how much operational carbon roof insulation could save relative to the initial investment of embodied carbon required to include it in a building. To understand this, we modeled the US Department of Energy's (DOE) Standalone Retail Prototype Building located in Climate Zone 4A to comply with ASHRAE 90.1-2019 energy requirements. We took the insulation product's embodied energy and carbon data from the Polyisocyanurate Insulation Manufacturers Association's (PIMA) industry-wide environmental product declaration (EPD).To significantly reduce operational carbon, the largest carbon challenge facing buildings today, the returns on the investment of our building design strategies need to be consistent over time. This is where passive design strategies like building enclosure improvements really shine. They have much longer service lives than, for example, finish materials, leading to sustained returns.Specifically, we looked here at how our example building's roof insulation impacted both embodied and operational carbon and energy use. To do this, we calculated the cumulative carbon savings over the 75-year life of our model building. In our example, we assumed R-30 insulation installed at the outset, increased every 20 years by R-10, when the roof membrane is periodically replaced.In our analysis, the embodied CO2e associated with installing R-30 (shown by the brown curve in years -1 to 1), the embodied carbon of the additional R-10 of insulation added every 20 years (too small to show up in the graph), and the embodied carbon represented by end-of-life disposal (also too small to show up) are all taken into account. About five months after the building becomes operational, the embodied carbon investment of the roof insulation is dwarfed by the operational savings it provides. The initial and supplemental roof insulation ultimately saves a net of 705 metric tons of carbon over the life of the building.If you want to see more examples like the one above, check out PIMA's study, conducted by the consulting firm ICF. The research group looked at several DOE building prototypes across a range of climate zones, calculating how much carbon, energy, and money can be saved when roof insulation is upgraded from an existing baseline to current code compliance. Their results can be found here. Justin Koscher of PIMA also highlighted these savings, conveniently sorted by climate zone and building type, here.Support for Carbon Investment DecisionsSo how can you make sure you address both operational and embodied carbon when making "carbon investment" decisions? We've prepared a handy chart to help.First, when looking at lower-embodied-carbon substitutions for higher-embodied-carbon building materials or systems (moving from the upper-left red quadrant to the lower-left yellow quadrant in the chart), ensure that the alternatives you are considering have equivalent performance attributes in terms of resilience and longevity. If an alternative material or system has lower initial embodied carbon, but doesn't perform as well or last as long as the specified product, then it may not be a good carbon investment. Another consideration here is whether or not the embodied carbon of the alternative is released as emissions (i.e. as part of its raw material supply or manufacturing, or "cradle to gate" stages), or if it remains in the product throughout its useful life. In other words, can the alternative item be considered a carbon sink? If so, using it may be a good strategy.Next, determine if the alternative product or system can provide operational carbon savings, even if it has high embodied energy (upper-right yellow quadrant). If the alternative has positive operational carbon impacts over a long period, don't sacrifice operational carbon savings for the sake of avoiding an initial embodied product carbon investment when justified for strategic reasons.Last, if a product has high operational carbon savings and relatively low embodied carbon (lower-right green quadrant), include more of this product in your designs. The polyiso roof insulation in our example above fits into this category. You can utilize these carbon savings to offset the carbon use in other areas of the design, like aesthetic finishes, where the decision to use the product may be discretionary but desired.When designing buildings, we need to consider the whole picture, looking at building products' embodied carbon as a potential investment yielding improved operational and performance outcomes. Our design choices and product selection can have a significant impact on total carbon targets for the buildings we envision, build, and operate.Click these links to learn more about GAF's and Siplast's insulation solutions. Please also visit our design professional and architect resources page for guide specifications, details, innovative green building materials, continuing education, and expert guidance.We presented the findings in this blog in a presentation called "Carbon and Energy Impacts of Roof Insulation: The Whole[-Life] Story" given at the BEST6 Conference on March 19, 2024 in Austin, Texas.References:Architecture 2030. (2019). New Buildings: Embodied Carbon. https://web.archive.org/web/20190801031738/https://architecture2030.org/new-buildings-embodied/ Carbon Leadership Forum. (2023, April 2). 1 - Embodied Carbon 101. https://carbonleadershipforum.org/embodied-carbon-101/

By Authors Elizabeth Grant

September 13, 2024

Roofers install GAF EverGuard® TPO Quick-Spray Adhesive on a flat roof
Commercial Roofing

Minimizing Disruption When Repairing Roofs on Schools and Hospitals

As a roofing contractor, you know how noisy roofing projects can get. And when repairing or replacing roofs on institutional properties, like schools and healthcare centers, it's often not possible to remove occupants during the project's duration.Accordingly, minimizing disruption at these facilities is key, as students need to be able to concentrate and patients must be protected as they recover. Here are common disruptions to consider and how to reduce them, with insight from GAF Building and Roofing Science Research Lead, Elizabeth Grant.Common Disruptions on Construction SitesYou have several challenges to consider when working on schools or other facilities with ongoing operations, including noise, odors, and occupants' safety.Elevated VolumeHeightened noise levels can affect both students and patients. At schools, loud sounds can affect students' ability to learn and concentrate. Likewise, construction noise can impact patients' ability to rest and recuperate in healthcare facilities.Strong OdorsWhen using certain roofing materials on big job sites—like powerful adhesives or hot-mopped roofing systems—odors may infiltrate the building. This may be distracting and affect the comfort of students and patients.Heavy MachineryUnloading and staging material can also cause disruption, as materials must be staged onsite to be ready for installation as the job progresses. This often involves using heavy equipment, such as cranes and lifts. Proper safety protections must be in place to ensure worker and occupant safety.Roofing Products That Minimize DisruptionUnfortunately, there's no good time for a roof repair or replacement at a medical facility. You may be able to complete school projects when school is out of session, but that isn't always the case if a leak or storm damage occurs.The best (and most proactive) way to minimize disruption is to use durable, long-lasting materials, as this reduces the number of times crews need to work on the roof.Single-Ply MembranesGrant recommends a robust single-ply membrane or a system with some redundancy, such as a multi-ply modified bitumen. She also suggests leveraging a hybrid system, composed of a multi-ply modified bitumen system with a single-ply top sheet for reflectivity.Cover and Substrate BoardsFor resiliency against noise-causing conditions such as hail and foot traffic, Grant suggests using cover and substrate boards. Cover boards are installed on top of the insulation and provide sound insulation, while substrate boards are installed directly on the roof deck under the insulation."If you have a really noisy location, and you want to keep people inside from hearing a lot of disruption, having cover and substrate boards included in the system can be really important," says Grant.Adhesives and FastenersAnother change you can make to reduce disruption is using adhesive to attach roofing products instead of mechanically fastening them. This helps avoid the noise from driving fasteners into the roof deck—and enables a faster installation.Grant notes that, depending on the FM and wind ratings required, it may be possible to adhere all the system components, including the insulation, cover boards, and membrane. An adhesive like GAF EverGuard® TPO Quick-Spray Adhesive can effectively adhere TPO and PVC roofing materials. The product has a high initial tackiness, allowing for faster installation than traditional adhesives. You can also opt for self-adhering products (vapor retarder, pipe boots, TPO roofing, etc.), which can further reduce installation time by eliminating adhesive application from the process.Materials That Shorten Project TimelinesA creative and efficient way to minimize disruption at school and hospital job sites is to reduce the time crews are on the roof. By taking advantage of time-saving materials, you can reduce the risk to workers and occupants, increase productivity, and ultimately take on more work.In addition to the Quick-Spray Adhesive, GAF offers several materials designed to cut installation time and labor:Wider rolls of TPO (12 feet instead of 10 feet) can help crews to spend less time installing systems on wide-open roofs.Insulation installation is easier with lightweight Ultra HD Composite Insulation, and it eliminates the need for one full application of adhesive in adhered systems.TPO self-adhered membrane can cut installation time by as much as 60% compared to installation using traditional bucket and roller adhesives.Experienced Support That Streamlines WorkIn addition to product and material selection, you can minimize disruptions by having GAF professionals from the Tapered Design Group help design the tapered insulation system. These professionals can help you with a variety of services, such as:Tapered insulation designTapered insulation Inventory management and orderingBudget friendly alternativesTapered insulation systems are designed to improve the drainage slope on roofs with substrate damage or without enough slope. The tapered design team at GAF "balances suitable slope with the least amount of material," Grant says. "To help with saving money, saving material, and saving time."This group designs tapered insulation systems that can be loaded and labeled strategically to minimize material handling and time spent looking for and transporting materials. Products are bundled by roof area, and a color-coded plan distinguishes areas for each bundle. Materials are precut and specifically designed for each project.Additional Tools to Save Time and LaborTwo other GAF tools can help you reduce the time spent on projects: GAF QuickSite™ and GAF QuickMeasure™.GAF QuickSite™GAF QuickSite™ provides the information you need before approaching a potential customer. It gives you a snapshot of local codes (important if you're working in an unfamiliar location), a 10-year wind and hail history, historical photographs documenting changes over time, and parcel information (including size and sales dates).GAF QuickMeasure™GAF QuickMeasure™ provides complete roof measurements including parapet wall lengths, heights and widths to help create estimates, past views showing how a roof may have changed over time, grid-lined paper for buildings with predominate pitch of 0 or 1, and a DXF file output for CAD.With the help of GAF QuickSite™, GAF QuickMeasure™, and the Tapered Design Group, you can confidently give your healthcare clients and school customers accurate estimates for suitable roofing products to meet their needs. These tools can also minimize disruption to building occupants and help building owners select durable, long-lasting products that will protect their investments for years to come.Leveraging GAF Professionals' ExperienceWhen working on schools, hospitals, and other important institutions, you're working to satisfy not only your clients but the individuals visiting these locations. By minimizing disruption, you can help ensure everyone involved experiences minimal disruption while you complete the project.For more insight into time- and labor-saving products and services, explore GAF School Rooftop Resources.

By Authors Dawn Killough

August 29, 2024

Don't miss another GAF RoofViews post!

Subscribe now