RoofViews

Building Science

Fresh Thinking About Cold Storage Roofs

By James R Kirby

April 19, 2019

fresh thinking about cold storage roofs

A "cold storage building" is a building or a portion of a building or structure designed to promote the extended shelf life of perishable products or commodities. There are varying levels of cold storage, such as coolers, chill coolers, holding freezers, and blast freezers. Coolers range from approximately 32 to 55 degrees F (0 to 13 degrees C), while blast freezers can have interior temperatures from -20 to -50 degrees F (-29 to -46 degrees C)1. The biggest difference from a roofing perspective is the amount of insulation for the varying levels of cold storage.

webinar on demand

For more information register to receive CEU credits for Webinars on Demand: Click here to go to the webinars.

The primary concern for proper roof design of a cold storage building is the significant vapor drive that occurs predominantly from the warmer exterior towards the colder interior. That directly leads to two critical aspects of the roof design: 1) proper placement of a vapor retarder to manage the vapor drive and 2) proper detailing to prevent air infiltration or exfiltration at enclosure transitions and penetrations. Additionally, the reduction or elimination of thermal bridges is important because of the critical need for a highly effective thermal boundary which, of course, keeps the items within the cold storage building at the proper temperature all while using the least amount of energy.

The building science perspective

A cold storage building is an excellent example of the need to understand the basics of the second law of thermodynamics. Those principles are:

  • Hot moves to cold
  • Wet/moist moves to dry
  • High pressure moves to low pressure

air flow

Figure 1: Illustration of the Second Law of Thermodynamics

Importantly, heat, moisture, and pressure always want to equalize across a boundary. For a cold storage building, this boundary is the building enclosure—the roof and walls.

Vapor drive and condensation

Cold storage buildings are maintained at temperatures that are most often much lower than the exterior temperature. For cold storage buildings, the warm, moist outside air wants to move to the interior of the cold storage building. This is especially the case in southern climates, and is generally true for most geographic locations in the US for most months of the year. More on that later. Therefore, the direction of the vapor drive is predominantly from the exterior to the interior. This means the roofing membrane will act as the vapor retarder and air barrier keeping vapor and air from getting into the roof system and creating condensation problems.

There may be times during the year in colder climates where the warmest cold storage buildings—a cooler with a temperature range from 32 to 55 degrees F (0 to 13 degrees C)—may experience a vapor drive from the interior to the exterior because it's colder outside than the interior. However, this is not likely problematic for two reasons. First, the amount of moisture inside a cold storage unit is low because of its low relative humidity—there just isn't a lot of moisture relative to the interior of, say, an office building. Second, because vapor drive also relates to pressure differences, a cold dry space (the interior of a cold storage unit) does not exert a pressure significantly greater than the cold, dry air of the exterior in a winter climate. Ultimately, a cold storage unit in a northerly climate should not experience a moisture gain within the roof system. And any moisture gained during the winter will be driven back into the cold storage portion during the warmer summer months.

Air leakage

Air-transported moisture is a bigger issue than vapor drive because of the comparative amount of actual moisture transported by each process.

The National Research Council Canada collected research data that illustrated how even small openings can affect overall air leakage performance. For example, only about 1/3 of a quart of water will diffuse through a continuous 4 ft. by 8 ft. sheet of gypsum during a one-month period even though gypsum board has a very high permeance.

However, if there is a 1-square-inch hole in this same sheet of gypsum, about 30 quarts of water can pass through the opening as a result of air leakage. This relationship is illustrated in Figure 2. This example illustrates that air leakage can cause more moisture-related problems than vapor diffusion.

air leakage

Figure 2: Air leakage versus vapor diffusion (Source: Building Science Corporation)

Accordingly, it is critical that a vapor retarder system be continuous when used in cold storage buildings so they also serve as an air barrier. (For more detail, see our blog about Air Barriers and Vapor Retarders). Laps, penetrations and the roof-to-wall interfaces should be sealed to prevent air leakage because discontinuity will allow air to infiltrate which can then lead to condensation problems. Again, most commonly, the roof membrane serves as the vapor retarder/air barrier.

Basic concepts of cold storage design

A cold storage building should have an uninterrupted, continuous building enclosure with these attributes:

  • Adequate amounts of insulation and an appropriate attachment method to maintain interior temperature and minimize thermal loss
  • Compensation for thermal expansion and contraction
  • Control of air and water vapor movement

The most common way to achieve these objectives is to use an Exterior Envelope System (EES). The EES method uses a vapor retarder that is located on the exterior side of the building's structural system. More specifically, the vapor retarder encapsulates the building and is located over the roof's insulation layer, on the outside of the exterior wall's insulation layer, and under the floor. This concept is shown in Figure 3.

vapor retarder

Figure 3: Conceptual Diagram of the Exterior Envelope System for cold storage buildings.

Cold storage design considerations

The design and construction of cold storage buildings requires attention to the following considerations:

  • Building location
  • Design values
  • Roof insulation
  • Thermal shorts/thermal bridging
  • Expansion and contraction
  • Air leakage and water vapor movement
  • Vapor retarder perm ratings

Building Location

In warm climates (e.g., Dallas), the prevailing vapor drive direction is inward, and therefore, the most effective location for a vapor retarder/air barrier is on the outside of the roof insulation. In most cases, the roof membrane will be the vapor retarder.

In moderate climates (e.g., Nashville and Kansas City), the vapor drive may be in either direction and the location of the vapor retarder/air barrier depends on the predominant direction of the vapor drive. However, because there is generally more total moisture in the air during the summer months (versus winter months), the predominant vapor drive is into the building. Again, the roof membrane will be the vapor retarder.

In cold climates (e.g., Buffalo), the vapor drive will be reversed when the outside temperature is colder than the interior temperature, but there is less concern with condensation issues because cold air has a relatively small amount of moisture and because the temperatures are often similar, vapor drive is less significant.

Design Values

If a roof system designer chooses to perform a dew-point or hygrothermal analysis to confirm the placement of the vapor retarder/air barrier, the following is needed:

  • Interior dry bulb temperature
  • Interior relative humidity
  • Exterior dry bulb temperature

These values are theoretical constant values based upon design assumptions for a single point in time, yet in reality, these change from day to day and season to season.

Roof Insulation

Insulation plays a critical role in the building enclosure performance of a cold storage building. In order to minimize the potential for interior condensation, appropriate amounts of insulation should be used so the interior surfaces of the building enclosure are kept above the dew point. Insulation type and R-value selection are affected by numerous factors, such as cost, desired energy efficiency, suitable material properties, interior design temperatures, and climatic conditions. Figure 4 offers suggestions for minimum R-values for roof insulation in cold storage buildings.

cold storage type and r value

Figure 4: Suggested Minimum R-Values for Roof Insulation2

The type of insulation used should be suitable and compatible for use in a cold storage building. A commonly used insulation type is closed-cell foam insulation, such as GAF EnergyGuard™ polyiso insulation. Here's a primer on roof insulation. Additionally, roof penetrations, such as mechanical curbs or roof hatches, and parapets and roof edges should be appropriately insulated and air sealed.

Thermal Shorts/Thermal Bridging

Designers should pay close attention to thermal shorts (e.g., gaps between boards) and thermal bridging (e.g., metal fasteners and plates) when designing roofing systems over cold storage buildings.

To reduce the effects of thermal shorts, roof insulation should be installed in at least two layers with offset joints—vertically and horizontally—to minimize air leakage and movement. Gaps between insulation boards should be filled.

To reduce the effects of thermal bridging, the roof membrane and upper layer(s) of rigid board insulation should be adhered. Mechanical fasteners should be avoided as the securement method for the roof membrane and upper layer(s) of rigid board insulation. When the substrate is a steel roof deck, the first layer of insulation (i.e., the layer in direct contact with the roof deck) may be mechanically attached. Subsequent layers should be installed with adhesives to reduce or eliminate thermal bridges.

Expansion and Contraction

Accommodation should be made for thermal movement in cold storage buildings. Building movement may lead to tearing of or damage to a vapor retarder/air barrier or the roofing system.

Pipes in roofs and walls may move due to thermal expansion and contraction, as well as vibration, so it is important to select pipe penetration flashings that can accommodate movement, such as pre-manufactured flashing boots.

Air Leakage and Water Vapor Movement

Problems occur when there are paths for air and water vapor movement within the building enclosure. It is imperative that the vapor retarder and roof system be continuous, tied to the wall air barrier, and completely sealed at:

  • Laps and seams
  • Roof penetrations, i.e., pipes, structural members, mechanical curbs, roof hatches, etc.
  • Roof-to-wall interface/intersections

Limiting the number of penetrations through the roof assembly is prudent. Also, if a separate vapor retarder/air barrier is used (in lieu of it being the roofing membrane), avoid attaching the roof system through the vapor retarder with mechanical fasteners for cold storage buildings. This maintains the vapor retarder's integrity and eliminates thermal bridging from fasteners.

Special attention should be paid to steel roof decks which are used in many cold storage buildings. It is challenging to seal steel roof decks at walls and penetrations. Deck flutes can serve as "conduits" or pathways through which air and air-transported moisture can flow. To minimize these effects, flutes may be filled with closed-cell spray polyurethane foam at walls and penetration locations.

Vapor Retarder Perm Ratings

Vapor retarders are typically membranes with relatively low permeance values, but not all vapor retarders are equal. There are three classes of vapor retarder materials, as shown in Figure 5.

class and definition

Figure 5: Three classes of vapor retarders

Most roof membranes are Class I vapor retarders. Perm ratings for single-ply membranes range from 0.03 to 0.06 perms. An example of a Class II vapor retarder is asphalt felts, which have perm ratings ranging from 0.3 to 0.8 perms. Examples of Class III vapor retarders are latex or acrylic paint. GAF recommends that Class I vapor retarders be used on cold storage buildings. It is important to note that these are material ratings; the full system needs to be designed and installed correctly for proper functionality.

Cold storage buildings are unique because of their low interior temperatures and the resulting vapor drive and significant potential for air infiltration. Taking into account the science of heat, air, and moisture movement when designing the roof system for a cold storage system is paramount for long-term success. For additional information, check out GAF's new document, "A Guide to Cold Storage Roof System Design"


1 "Energy Modeling Guideline for Cold Storage and Refrigerated Warehouse Facilities" issued by the International Association for Cold Storage Construction and the International Association of Refrigerated Warehouses

2"Energy Modeling Guideline for Cold Storage and Refrigerated Warehouse Facilities," issued by the International Association for Cold Storage Construction and the International Association of Refrigerated Warehouses.

About the Author

James R. Kirby, AIA, is a GAF building and roofing science architect. Jim has a Masters of Architectural Structures and is a licensed architect. He has over 25 years of experience in the roofing industry covering low-slope roof systems, steep-slope roof systems, metal panel roof systems, spray polyurethane foam roof systems, vegetative roof coverings, and rooftop photovoltaics. He understands the effects of heat, air, and moisture movement through a roof system. Jim presents building and roofing science information to architects, consultants and building owners, and writes articles and blogs for building owners and facility managers, and the roofing industry. Kirby is a member of AIA, ASTM, ICC, MRCA, NRCA, RCI, and the USGBC.

Related Articles

Flat roof with hot air welded pvc membrane waterproofing for ballasted system
Building Science

Thermal Bridging Through Roof Fasteners: Why the Industry Should Take Note

What is going on here?No, this roof does not have measles, it has a problem with thermal bridging through the roof fasteners holding its components in place, and this problem is not one to be ignored.As building construction evolves, you'd think these tiny breaches through the insulating layers of the assembly, known as point thermal bridges, would matter less and less. But, as it happens, the reverse is true! The tighter and better-insulated a building, the bigger the difference all of the weak points, in its thermal enclosure, make. A range of codes and standards are beginning to address this problem, though it's important to note that there is often a time lag between development of codes and their widespread adoption.What Is the Industry Doing About It?Long in the business of supporting high-performance building enclosures, Phius (Passive House Institute US) provides a Fastener Correction Calculator along with a way to calculate the effect of linear thermal bridges (think shelf angles, lintels, and so on). By contrast, the 2021 International Energy Conservation Code also addresses thermal bridging, but only considers framing materials to be thermal bridges, and actually pointedly ignores the effects of point loads like fasteners in its definition of continuous insulation: "insulation material that is continuous across all structural members without thermal bridges other than fasteners and service openings" (Section C202). Likewise, The National Energy Code of Canada for Buildings: 2020 addresses thermal bridging of a number of building components, but also explicitly excludes fasteners: "in calculating the overall thermal transmittance of assemblies…fasteners need not be taken into account" (Section 3.1.1.7.3). Admittedly, point thermal bridges are often excluded because it is challenging to assess them with simple simulation tools.Despite this, researchers have had a hunch for decades that thermal bridging through the multitude of fasteners often used in roofs is in fact significant enough to warrant study. Investigators at the National Bureau of Standards, Oak Ridge National Laboratory, the National Research Council Canada, and consulting firms Morrison Hershfield and Simpson Gumpertz & Heger (SGH), have conducted laboratory and computer simulation studies to analyze the effects of point thermal bridges.Why Pay Attention Now?The problem has been made worse in recent years because changes in wind speeds, design wind pressures, and roof zones as dictated by ASCE 7-16 and 7-22 (see blogs by Jim Kirby and Kristin Westover for more insight), mean that fastener patterns are becoming denser in many cases. This means that there is more metal on average, per square foot of roof, than ever before. More metal means that more heat escapes the building in winter and enters the building in summer. By making our buildings more robust against wind uplift to meet updated standards, we are in effect making them less robust against the negative effects of hot and cold weather conditions.So, how bad is this problem, and what's a roof designer to do about it? A team of researchers at SGH, Virginia Tech, and GAF set out to determine the answer, first by simplifying the problem. Our plan was to develop computer simulations to accurately anticipate the thermal bridging effects of fasteners based on their characteristics and the characteristics of the roof assemblies in which they are used. In other words, we broke the problem down into parts, so we could know how each part affects the problem as a whole. We also wanted to carefully check the assumptions underlying our computer simulation and ensure that our results matched up with what we were finding in the lab. The full paper describing our work was delivered at the 2023 IIBEC Convention and Trade Show, but here are the high points, starting with how we set up the study.First, we began with a simple 4" polyisocyanurate board (ISO), and called it Case A-I.Next, we added a high-density polyisocyanurate cover board (HD ISO), and called that Case A-II.Third, we added galvanized steel deck to the 4" polyiso, and called that Case A-III.Finally, we created the whole sandwich: HD ISO and ISO over steel deck, which was Case A-IV.Note that we did not include a roof membrane, substrate board, air barrier, or vapor retarder in these assemblies, partly to keep it simple, and partly because these components don't typically add much insulation value to a roof assembly.The cases can be considered base cases, as they do not yet contain a fastener. We needed to simulate and physically test these, so we could understand the effect that fasteners have when added to them.We also ran a set of samples, B-I through B-IV, that corresponded with cases A-I through A-IV above, but had one #12 fastener, 6" long, in the center of the 2' x 2' assembly, with a 3" diameter insulation plate. These are depicted below. The fastener penetrated the ISO and steel deck, but not the HD ISO.One visualization of the computer simulation is shown here, for Case B-IV. The stripes of color, or isotherms, show the vulnerability of the assembly at the location of the fastener.What did we find? The results might surprise you.First, it's no surprise that the fastener reduced the R-value of the 2' x 2' sample of ISO alone by 4.2% in the physical sample, and 3.4% in the computer simulation (Case B-I compared to Case A-I).When the HD ISO was added (Cases II), R-value fell by 2.2% and 2.7% for the physical experiment and computer simulation, respectively, when the fastener was added. In other words, adding the fastener still caused a drop in R-value, but that drop was considerably less than when no cover board was used. This proved what we suspected, that the HD ISO had an important protective effect against the thermal bridging caused by the fastener.Next, we found that the steel deck made a big difference as well. In the physical experiment, the air contained in the flutes of the steel deck added to the R-value of the assembly, while the computer simulation did not account for this effect. That's an item that needs to be addressed in the next phase of research. Despite this anomaly, both approaches showed the same thing: steel deck acts like a radiator, exacerbating the effect of the fastener. In the assemblies with just ISO and steel deck (Cases III), adding a fastener resulted in an R-value drop of 11.0% for the physical experiment and 4.6% for the computer simulation compared to the assembly with no fastener.Finally, the assemblies with all the components (HD ISO, ISO and steel deck, a.k.a. Cases IV) showed again that the HD ISO insulated the fastener and reduced its negative impact on the R-value of the overall assembly. The physical experiment had a 6.1% drop (down from 11% with no cover board!) and the computer simulation a 4.2% drop (down from 4.6% with no cover board) in R-value when the fastener was added.What Does This Study Tell Us?The morals of the study just described are these:Roof fasteners have a measurable impact on the R-value of roof insulation.High-density polyisocyanurate cover boards go a long way toward minimizing the thermal impacts of roof fasteners.Steel deck, due to its high conductivity, acts as a radiator, amplifying the thermal bridging effect of fasteners.What Should We Do About It?As for figuring out what to do about it, this study and others first need to be extended to the real world, and that means making assumptions about parameters like the siting of the building, the roof fastener densities required, and the roof assembly type.Several groups have made this leap from looking at point thermal bridges to what they mean for a roof's overall performance. The following example was explored in a paper by Taylor, Willits, Hartwig and Kirby, presented at the RCI, Inc. Building Envelope Technology Symposium in 2018. In that paper, the authors extended computer simulation results from a 2015 paper by Olson, Saldanha, and Hsu to a set of actual roofing scenarios. They found that the installation method has a big impact on the in-service R-value of the roof.They assumed a 15,000-square-foot roof, fastener patterns and densities based on a wind uplift requirement of 120 pounds per square foot, and a design R-value of R-30. In this example, a traditional mechanically attached roof had an in-service R-value of only R-25, which is a 17% loss compared to the design R-value.An induction-welded roof was a slight improvement over the mechanically attached assembly, with an in-service value of only R-26.5 (a 12% loss compared to the design R-value).Adhering instead of fastening the top layer of polyiso resulted in an in-service R-value of R-28.7 (a 4% loss compared to the design R-value).Finally, in their study, an HD polyiso board was used as a mechanically fastened substrate board on top of the steel deck, allowing both layers of continuous polyiso insulation and the roof membrane to be adhered. Doing so resulted in an in-service R-value of R-29.5, representing only a 1.5% loss compared to the design R-value.To operationalize these findings in your own roofing design projects, consider the following approaches:Consider eliminating roof fasteners altogether, or burying them beneath one or more layers of insulation. Multiple studies have shown that placing fastener heads and plates beneath a cover board, or, better yet, beneath one or two layers of staggered insulation, such as GAF's EnergyGuard™ Polyiso Insulation, can dampen the thermal bridging effects of fasteners. Adhering all or some of the layers of a roof assembly minimizes unwanted thermal outcomes.Consider using an insulating cover board, such as GAF's EnergyGuard™ HD or EnergyGuard™ HD Plus Polyiso cover board. Installing an adhered cover board in general is good roofing practice for a host of reasons: they provide enhanced longevity and system performance by protecting roof membranes and insulation from hail damage; they allow for enhanced wind uplift and improved aesthetics; and they offer additional R-value and mitigate thermal bridging as shown in our recent study.Consider using an induction-welded system that minimizes the number of total roof fasteners by dictating an even spacing of insulation fasteners. The special plates of these fasteners are then welded to the underside of the roof membrane using an induction heat tool. This process eliminates the need for additional membrane fasteners.Consider beefing up the R-value of the roof insulation. If fasteners diminish the actual thermal performance of roof insulation, building owners are not getting the benefit of the design R-value. Extra insulation beyond the code minimum can be specified to make up the difference.Where Do We Go From Here?Some work remains to be done before we have a computer simulation that more closely aligns with physical experiments on identical assemblies. But, the two methods in our recent study aligned within a range of 0.8 to 6.7%, which indicates that we are making progress. With ever-better modeling methods, designers should soon be able to predict the impact of fasteners rather than ignoring it and hoping for the best.Once we, as a roofing industry, have these detailed computer simulation tools in place, we can include the findings from these tools in codes and standards. These can be used by those who don't have the time or resources to model roof assemblies using a lab or sophisticated modeling software. With easy-to-use resources quantifying thermal bridging through roof fasteners, roof designers will no longer be putting building owners at risk of wasting energy, or, even worse, of experiencing condensation problems due to under-insulated roof assemblies. Designers will have a much better picture of exactly what the building owner is getting when they specify a roof that includes fasteners, and which of the measures detailed above they might take into consideration to avoid any negative consequences.This research discussed in this blog was conducted with a grant from the RCI-IIBEC Foundation and was presented at IIBEC's 2023 Annual Trade Show and Convention in Houston on March 6. Contact IIBEC at https://iibec.org/ or GAF at BuildingScience@GAF.com for more information.

By Authors Elizabeth Grant

November 17, 2023

Rolling out cooling GAF Streetbond® coating in blue and white, Pacoima, L.A.
In Your Community

Creating Net-Positive Communities: GAF Taking Action to Drive Carbon Reduction

Companies, organizations, and firms working in the building, construction, and design space have a unique opportunity and responsibility. Collectively, we are contributing to nearly 40% of energy-related carbon emissions worldwide. While the goals, commitments, pledges, and promises around these challenges are a step in the right direction, no one entity alone will make major improvements to this daunting issue.We need to come together, demonstrate courageous change leadership, and take collective approaches to address the built environment's impacts on climate. Collectively, we have a unique opportunity to improve people's lives and make positive, measurable changes to impact:Buildings, homes, and hardscapesCommunity planningConsumer, commercial, and public sector behaviorOur Collective Challenge to Reduce our Carbon FootprintAccording to many sources, including the U.S. Green Building Council (USGBC), the built environment accounts for 39% of global energy-related carbon emissions worldwide. Operational emissions from buildings make up 28% and the remaining 11% comes from materials and construction.By definition, embodied carbon is emitted by the manufacture, transport, and installation of construction materials, and operational carbon typically results from heating, cooling, electrical use, and waste disposal of a building. Embodied carbon emissions are set during construction. This 11% of carbon attributed to the building materials and construction sector is something each company could impact individually based on manufacturing processes and material selection.The more significant 28% of carbon emissions from the built environment is produced through the daily operations of buildings. This is a dynamic that no company can influence alone. Improving the energy performance of existing and new buildings is a must, as it accounts for between 60–80% of greenhouse gas emissions from the building and construction sector. Improving energy sources for buildings, and increasing energy efficiency in the buildings' envelope and operating systems are all necessary for future carbon and economic performance.Why It Is Imperative to Reduce our Carbon Emissions TodayThere are numerous collectives that are driving awareness, understanding, and action at the governmental and organizational levels, largely inspired by the Paris Agreement enacted at the United Nations Climate Change Conference of Parties (COP21) in 2015. The Architecture 2030 Challenge was inspired by the Paris Agreement and seeks to reduce climate impacts from carbon in the built environment.Since the enactment of the Paris Agreement and Architecture 2030 Challenge, myopic approaches to addressing carbon have prevailed, including the rampant net-zero carbon goals for individual companies, firms, and building projects. Though these efforts are admirable, many lack real roadmaps to achieve these goals. In light of this, the US Security and Exchange Commission has issued requirements for companies, firms, and others to divulge plans to meet these lofty goals and ultimately report to the government on progress in reaching targets. These individual actions will only take us so far.Additionally, the regulatory environment continues to evolve and drive change. If we consider the legislative activity in Europe, which frequently leads the way for the rest of the world, we can all expect carbon taxes to become the standard. There are currently 15 proposed bills that would implement a price on carbon dioxide emissions. Several states have introduced carbon pricing schemes that cover emissions within their territory, including California, Oregon, Washington, Hawaii, Pennsylvania, and Massachusetts. Currently, these schemes primarily rely on cap and trade programs within the power sector. It is not a matter of if but when carbon taxes will become a reality in the US.Theory of ChangeClimate issues are immediate and immense. Our industry is so interdependent that we can't have one sector delivering amazing results while another is idle. Making changes and improvements requires an effort bigger than any one organization could manage. Working together, we can share resources and ideas in new ways. We can create advantages and efficiencies in shared R&D, supply chain, manufacturing, transportation, design, installation, and more.Collaboration will bring measurable near-term positive change that would enable buildings and homes to become net-positive beacons for their surrounding communities. We can create a network where each building/home has a positive multiplier effect. The network is then compounded by linking to other elements that contribute to a community's overall carbon footprint.Proof of Concept: GAF Cool Community ProjectAn estimated 85% of Americans, around 280 million people, live in metropolitan areas. As the climate continues to change, many urban areas are experiencing extreme heat or a "heat island effect." Not only is excess heat uncomfortable, but heat islands are public health and economic concerns, especially for vulnerable communities that are often most impacted.Pacoima, a neighborhood in Los Angeles, was selected by a consortium of partners as a key community to develop a first-of-its-kind community-wide research initiative to understand the impacts various cooling solutions have on urban heat and livability. Pacoima is a lower income community in one of the hottest areas in the greater Los Angeles area. The neighborhood represents other communities that are disproportionately impacted by climate change and often underinvested in.Implementation:Phase 1: This included the application of GAF StreetBond® DuraShield cool, solar-reflective pavement coatings on all ground-level hard surfaces, including neighborhood streets, crosswalks, basketball courts, parking lots, and playgrounds. The project also includes a robust community engagement process to support local involvement in the project, measure qualitative and quantitative impact on how cooling improves living conditions, and ensure the success of the project.Phase 2: After 12 months of monitoring and research, GAF and partners will evaluate the impact of the cool pavements with the intent to scale the plan to include reflective roofing and solar solutions.This ongoing project will allow us to evaluate for proof of concept and assess a variety of solutions as well as how different interventions can work together effectively (i.e., increasing tree canopies, greenspacing, cool pavements, cool roofs, etc.). Through community-wide approaches such as this, it's possible that we could get ahead of the legislation and make significant innovative contributions to communities locally, nationally, and globally.GAF Is Taking Action to Create Community-wide Climate SolutionsWith collaboration from leaders across the building space and adjacent sectors, we believe it is possible to drive a priority shift from net neutral to net positive. Addressing both embodied and operational carbon can help build real-world, net-positive communities.We invite all who are able and interested in working together in the following ways:Join a consortium of individuals, organizations, and companies to identify and develop opportunities and solutions for collective action in the built environment. The group will answer questions about how to improve the carbon impacts of the existing and future built environment through scalable, practical, and nimble approaches. Solutions could range from unique design concepts to materials, applications, testing, and measurement so we can operationalize solutions across the built environment.Help to scale the Cool Community project that was started in Pacoima. This can be done by joining in with a collaborative and collective approach to climate adaptation for Phase 2 in Pacoima and other cities around the country where similar work is beginning.Collaborate in designing and building scientific approaches to determine effective carbon avoidance—or reduction—efforts that are scalable to create net-positive carbon communities. Explore efforts to use climate adaptation and community cooling approaches (i.e., design solutions, roofing and pavement solutions, improved building envelope technologies, green spacing, tree coverage, and shading opportunities) to increase albedo of hard surfaces. Improve energy efficiency to existing buildings and homes and ultimately reduce carbon at the community level.To learn more and to engage in any of these efforts, please reach out to us at sustainability@gaf.com.

By Authors Jennifer Keegan

May 31, 2023

GAF Building and Roofing Science Team
Building Science

Developing Best Practice Solutions for GAF and Siplast Customers

With any roofing project, there are a number of factors to consider when choosing the right design: sustainability profile, potential risks, overall performance, and more. Our Building and Roofing Science (BRS) team specializes in working with industry professionals to help them enhance their roof designs across all of these areas. Leveraging their building enclosure expertise, our BRS team serves as thought leaders and collaborators, helping design professionals deliver better solutions for their customers."We're a consultant's consultant. Basically, we're a sounding board for them," explains Jennifer Keegan, Director of Building and Roofing Science. Rather than solely providing product specifications and tactical support, the BRS team partners with consultants, specifiers, and architects to provide guidance on designing high-performing roofs that don't just meet code, but evolve their practices and thinking. For example, this might include understanding the science behind properly placed air and vapor retarders.As experts in the field, our BRS team members frequently attend conferences to share their expertise and findings. As Jennifer explains, "Our biggest goal is to help designers make an informed decision." Those decisions might be in a number of areas, including the building science behind roof attachment options, proper placement of air and vapor retarders, and how a roof can contribute to energy efficiency goals.Expanding the BRS TeamOur BRS team is accessible nationwide to look at the overall science of roof assembly and all of the components and best practices that make up a high-performance, low-risk, and energy-efficient roof. Our regional experts are positioned strategically to better serve our customers and the industry as a whole. We have the capacity to work with partners across the country on a more personalized level, providing guidance on roof assembly, membrane type, attachment method, or complicated roof details including consideration of the roof to wall interface.Partnering with the Design Services TeamIn addition to our newly expanded BRS team, GAF also offers support through its Design Services team. This group helps with traditional applications, installations, and system approvals. GAF's Design Services team is a great resource to answer any product questions, help you ensure your project meets applicable code requirements, assess compatibility of products, outline specifications, and assist with wind calculations. By serving as the front line in partnership with our BRS team, the Design Services team can help guide the design community through any phase of a project.GAF's Building and Roofing Science team is the next step for some of those trickier building projects, and can take into consideration air, vapor, and thermal requirements that a designer might be considering for their roof assembly. Through a collaborative process, our BRS team seeks to inspire project teams, as Jennifer explains, "to do it the best way possible."Engaging with the TeamsGAF has the support you need for any of your design and roofing science needs. To request support from the GAF Design Services team, you can email designservices@gaf.com. For additional support from our Building and Roofing Science team regarding specialty installations or how a building can be supported by enhanced roof design, contact us at buildingscience@gaf.com.Our Building and Roofing Science team is always happy to support you as you work through complex jobs. You can also sign up to join their office hours here.

By Authors GAF Roof Views

May 08, 2023

Don't miss another GAF RoofViews post!

Subscribe now